l AD=A108 526 INCO INC MCLEAN V F76 972
omct.z VERSUS 10M cowmuxv: ANALYSIS. (W)
NOV NO0D14=81=C~0808
NL

UNCLASSIFIED

o =
| 5
|

0 &
l_
o
e
E=——

.)

MICROCOPY RESOLUTION TEST CHARTY
NATIONAL BURELAU OF STANDARDS 1963-A

ADA10859 6

— w
i
i
DTIC
ELECTE
3 $=-D
O
& D
=
e
DISTRIBUTION STATEMENT A
Approved for public releasef 81 11 26 04

Distribution Unlimited

LEVEL® &2

INCO/UP-I-81-83155-U

a
M
Distribution/

Availability Codes

ist

f

Avail and/or
Special

.

ORACIE vs, IIM
Camparative Analysis

10 November 1981

Contract No. N00014-81-C-0808

Prepared for:

Office of Naval Research
Code 240
Attn: Joel Trimble
800 N. Quincy Street
Arlington, Virginia 22217

DTIC

Prepared by: ELECTE
INCD, INC,
8260 Crive DEC 14 1981
Mclean, Virginia 22102

DISTRIBUTION STATEMENT A

Approved for public release|
Distribution Unlimited

g

il
W N =

:

e o o o o
oW N

!]

® o o o o e o o o
U WN) = - wWwN -

[KKK K] UlUIU'UlUly'l L X X X X w NNhvNoN

.
o WN -

! g

INTRODUCTION
Purpose of Conparative Analysis
Project References
Glossary

ORACLE SQL DESCRIPTION
Query Statements
Data Definition Statements
Data Manipulation Statements
Security and Concurrency Control Statements

UNIQUE SQL/DS FEATURES

IDL DESCRIPTION
Query Statements
Data Definition Statements
Data Manipulation Statements
Security and Concurrency Control Statements

IDM COMMAND RELATIONSHIP TO IDL
Query/Parse Tree
Query Statements
Data Definition Statements
Data Manipulation Statements
Security and Concurrency Control Statements

CORRELATION BETWEEN SQL AND IDM FEATURES
Query Facilities
Data Manipulation Facilities
Data Definition Facilities
Security and Concurrency Oontrol Facilities

ADDITIONAL IDM FEATURES

UNIMPLEMENTED FEATURES CF FULL SBEQUEL

1-1
1-5

LIST OF FIGURES

NN TN~
e ¢ 6 © o o o
N n n N

[P N _ i Lk

\

SECTION 1. INTRODUCTION

l.1 Purpose of Cawparative Analysis. A camparison of the syntactic and

semantic structures of the SEQUEL implemented in ORACLE (Version 2.3) and

—— oems oum

IDL (the Intelligent Database Language), the query language designed for

the IDM 508, was conducted as the basis for building a Front-End to the

IDM 500 Database Machine. Implementation of the transportable SPQUEL

front-end with the IDM 500, wvhich will support the ORACLE subset of

: ' SEQUEL, will provide the Navy IAIPS Program with a low-cost alternmative 1

for achieving a high performance relational database intelligence support

envirorment.

F The analysis focused on the features of each language, and on the
features available with the IIM. This process was used to highlight the
additional procedures necessary to create the language translation
procedures that will be implemented by the SEQUEL/IIDM Translation (SIT)
camponent of the Front-End. Information on ORACLE SPQUEL 2.3 was
derived from document review. Information about the IDM and
Bfitton-Lee's query language, IDL, cames both fram the literature and

! ive hands-on use.

This document contains: a description of ORACLE SOf.. Familiarity

F with the ORACLE manual is subsumed; SIL/DS features are described: a

description of 1IDL and its relationship to the IDM commands; the

correlation between SQL and the ITM features; additional IIM features not

available within SOL; and unimplemented features of full SEQUEL.

1.2 Project References.

1, Autcmated Data Systems Documentation Standards. Department of
Defense Instruction 7935.1-S,Sept.1977.

2. PBritton-lee, Inc. "DBMS In a Box." los Gatos, California.
3. Britton-lee, Inc. “IDM. The Intelligent Database Machine."

4. Britton-lee, Inc. IDM 500 Intelligent Database Machine Product

Description. Los Gatos, California, 198l.

5. Britton-lee, Inc. Preliminary Performance Report - IDM 500.

6. Chamberlin, P.D. et al "SEQUEL 2: A Unified Approach to Data

Definition, Manipulation, and Control.” IBM Journal of Research and

7. Dieckmann, E. Martin. “Three Relational DEMS." Datamation,)

(September, 1981), pp. 137-148.

8. "Eight Fortune 50 Companies Offer Test Sites for New
Britton-Lee Intelligent Database Machine." 3 pgs. Britton-lee News
Release ~ September 1980.

9. "English Merchant Banks Provide One Million Dollar Second Phase
Financing for Britton-lee." 2 pgs. PBEritton-lee News Release - September
1960.

16. Epstein, Robert and Hawthorn, Paula. "Aid in the 80s."

Datamation Magazine, 1980, pp. 154-158.

11. Epstein, Robert and Hawthorn, Paula. "Design Decisions for the
Intelligent Database Machine."™ AFIPS-Conference Proceedings, Volume 49,

lm' wo 237-2410

12. I1BM. SQL/Data System General Information - Program Product.

Program Numbers 5748-XX5. Gl+24-5012-0/File No. S370-50.

13. IBM. "sQL/Data System Concepts and Facilities - Program
Product." Program Number 5748-XX5. Gl+24-5013-0/File No. S379-50.

14. IDM 50P Software Reference Manual. Britton-Lee, Inc.,
September 1981.

15. Inco. “Data Base Technology - A Concept and Recammendation.”

June 1981.
16. Krass, Peter and Wiener, Hesh. "The DBMS Market is Boaming.”
Datamation. (September, 198l1), pp. 153-170.

17. ORACLE User's Guide. Version 2.3. Relational Software

Incorporated. BApril, 1981.

18, Outline for SQL Front-End Functional Description. INCO:
October, 198l1.

19. "Processor Does Data Base Tasks," Electronics. April 24, 1980.

20. Project Work Plan/Comparative Analysis Outine. INCO:
September, 1981.

21. "Technical Proposal for Development of a SEQUEL Front-End
(Language Feature Specification)." Prepared for: Office of Naval
Research; INCO: July, 1981.

22. Technical Memos

Memo # : 1184/01

Date t 14 July 1981
Originator: M. Kerchner

Subject : SPEQUEL/IDL Translation
Memo # s 1184/02

Date : 14 July 1981
Originator: M. Kerchner

Qi cah oo

PN R TTY
. e e .

Subject :

Memo # s
Date H
Originator:
Subject :

4

e e en o8

Originator

2

3
L

Originator

i
3

4

Originator

i
3

SOL~IDL Cammand Translation

1184/03

22 July 1981

M. Kerchner

SOL/IDM Implementation Requirements Definition

1184A/04

22 July 1981

Fred Friedman

BNF Syntax for CDS-1009 SQL Queries

1184/09

14 August 1981

M. Kerchner

High Level Design Review of BNF Syntax for CDS-1000
SQL Queries

1184A/10

13 August 1981

Fred Friedman

CDS-100¢ SQI, Architecture

1-4

n
;
%
!
i
i
i
!
!
;

1.3 Glossary

ALL BUT

ALL RIGITS

AVG

BEGIN TRANSACTION

CHAR

column

{(column, ...)

<column, ...>

CONNECT BY

oconstant

indicates that all privileges except those listed in the
GRANT cammand are to be granted, or that all privileges
except those listed in the REVOKE cammand are to be
withdrawn.

indicates that all privileges are to be granted, or
that all privileges are to be revoked.

indicates the boolean operator AND. Boolian
operators are used to connect predicates to form
campowrd logical expressions.

indicates ascending sort order. If no sort direction is
specified for a field, ascending is assumed.

specifies the arithmetic average of the values contained
in the set of qualifying fields.

identifies the start of a logical transaction consisting
of one or more SOL statements. The BEGIN TRANSACTION
must specify those tables (if any) being locked for UPDATE
purposes, and those tables (if any) being locked for READ
purposes.

indicates the range comparison operator. The range is
specified as a pair of constants, expressions, or columns
connected by an AND.

indicates the column is to contain alpha-numeric character
string values.

specifies the name of a column defined in a table or view.

specifies the names of the columns of the table in the
order the values will appear.

specifies a set of numeric or character-string literal
values. The set is enclosed in angle-brackets < > and
items within the set are separated by commas.

specifies the selection of rows according to their
tree-structure relationship. The clause requires
specification of the major and minor colums.

specifies any numeric or character-string constant literal
value that is to be inserted into the database in the

1-5

specified colum. Single quotation marks are required
around all character-string constants to distinguish them
fran column names.

specifies the cont of the set of all fields or rows
l qualified by the WHERE clause. COUNT indicates null
fields in its total.

defines a new table that is to be physically stored in
the database. A table may contain fram 1 to 255 columns.

The CREATE TABLE specifies the name of the table, the names
of the colums, and the column data types.

adds an authorized user to a secure ORACLE database. Only
f : defined users are permitted to log on to a secure database.

] DEFINE VIEW creates an alternative view of data stored in tables in the
3 database. The DEFINE VIEW statement names the view and
optionally names its colums. A view may be defined in
terms of other views. Views may be queried in the same
way as stored tables; however, I[ELFTE, UPDATE, and INSERT
clauses may “not" reference views.

DELETE

DELETE clause specifies the name of the table containing a row or set of
rows that are to be removed from the database. The specific
rows that are to be deleted are qualified by a WHERE clause.

DESC indicates descending sort order.

DROP statement removes tables or views fram the system. Once a system

entity has been dropped, its name may be reused. A table
cannot be dropped if the table contains data. A table or
* view cannot be dropped if another view is defined upon it.

END TRANSACTION is used to terminate a transaction that was started with a
BEGIN TRANSACTION statement.

EXPAND TABLE adds a new column to an existing table stored in the
database. The new column is added to the right side of the
table. Existing rows are considered to have null values
in the new column until they are updated.

——

expression specifies an arithmetic expression made up of columns and
oconstants that are oonnected by the operators +, -, *,
/. Parenthesis () are used to establish precedence. Note
that expressions involving a column value of NULL, will
result in a null value unless the NULL Function parameter
is used.

&

<expression,...”

FROM clause

generic-constant

GRANT

HAVING clause

GROoUP BY

INCLUDING

INCLUDING clause

specifies a set of constant values or expressions.

lists the tables and views that are referred to by the
other clauses in the cquery block. A query block must
contain a SELECT and FROM clause, and may optionally oontain
a WERE, GROUP BY, or HAVING clause.

indicates any of the SQL built-in group functions COUNT,
SWM, AVG, MAX, MIN. The presence of a built-in function
within a SELECT clause implies a GROUP BY. If the GROUP
BY is not explicitly stated, the entire query result is
treated as one group and each field in the SELECT clause
must be a unique property of the group.

specifies the leading character-string of a literal value.
The leading string must be followed by the ellipsis
notation "..." and the result must be enclosed in single
aquotation marks. Specification of a generic constant
allows for a search on a leading character-string of a
value.

allows the user who creates a table or view to give access
privileges to other users. Those privileges are: READ,
INSERT, [ELETE, UPDATE, and EXPAND.

qualifies groups that are to be returned as the result of a
query. Each field listed in the HAVING clause must be a

unique property of the group.

is used to partition tables or views into groups according
to the values in a colum or a list of columns. A built~in
set function is then applied to each group. A GROUP BY
clause is always used with a built-in function.

indicates that an index is to be maintained for the values
in the colum. Join operations can be performed only

if both columns referenced in the joining predicate are
defined as IMAGE.

indicates the set inclusion operator. IN tests a field for
inclusion in a set of values. The camparison operator =
may be used in place of IN.

is used with queries on tree-structured tables in
conjunction with the WHERE clause to determine which rows
are to be returned as a result of the query.

specifically contains any predicates or logical expressions
that may be contained within the WHERE clause. INCLUDING

O U PR

len

major-column

minor-~column

Null Value Function

wn L g ——

password

is an optional clause used in conjunction with the OONNECT
BY clause.

specifies the adding of a new row or set of rows into a
table. Fields that are not present in the insertion
statement are given null values.

specifies the maximum length of a value to be stored in a
character string field. The length must be a nunber fram
1 to 255.

specifies the name of the assembly column.

specifies the maximum numeric value contained in the set
of qualifying fields.

specifies the minimum numeric value contained in the set
of qualifying fields.

specifies the name of the camponent column.
indicates that null values are not permitted in the column.

specifies that the following predicate or boolean expression
is to be negated.

indicates the absence of a value in the database. Null
values are ignored in the evaluation of all arithmetic
expressions, and the camputation of all built~in functions
except COUNT. NULL values are treated as unknowns in the
evaluation of logical expressions (see Three Values Logic).

assigns a temporary value to null value encountered within
an expression. The Null Value Function may be used in a
SELECT, SET, or WHERE clause anywhere a column name may be
used including within arithmetic expressions and built-in-
functions.

indicates the colum is to contain numeric values. Numeric
values are stored internally in base 256 format to maintain
maximum precision.

indicates the boolean operator OR.

indicates the sequence that the query result is to be
returned. The ORIER BY clause may contain a major and up
to 254 minor sorting fields, with a maximum concatenated
sort field of 255 characters.

specifies the name of the password for the user being

1-8

PRIOR

privilege

PUBLIC

START WITH

table

defined. The user must enter this password when logging
on to an ORACLE database. The password can have a
maximum length of 20 characters.

specifies the direction in which rows are to be selected.
If the PRIOR keyword is placed before the minor (camponent)
colunn, the query proceeds down the tree (explosion). 1If
the PRIOR is placed before the major (assembly) column, the
query proceeds up the tree (implosion).

specifies the type of operations that are to be authorized
for the table. Privileges that have been granted by means
of the GRANT cammand may be withdrawn through the use of
the REVOKE cammand .

all users of the database

specifies that the table should be locked to update
transactions. Read transactions may concurrently access
the table.

specifies the use of the result of a query as a view on
the database. Any vaid query bock can be used as a
database view. The query blocks may be nested to any
number of levels.

specifies a column or list of colums to be modified within
the table referenced by the UPDATE clause. A SET clause

is always used in conjunction with an UPDATE clause. New
values for fields that are to be updated may be state as
constants or expressions.

a relational data language that provides a unified set of
facilities for query, data manipulation, data definitiom,
and data control. SQL is both a terminal interface for
nonspecialists in data processing, and a data sublanguage
embedded in host programming language for use by application
programmers.

specifies the rows that are to be used as starting points
in queries on tree-structured tables. The START with clause
may contain any predicate or logical expressions that may
be contained within a WHERE clause. The START WITH clause
is always used in conjunction with the CONNECT BY clause.

specifies the arithmetic sum of the values of qualifying
fields.

specifies the name of a table or view that contains colums
referenced by SELECT, WHERE, GROUP BY, HAVING, or ORDER

1-9

table.*

value

view

WHERE space

i WITH GRANT OPTION

i i e
A

table*

- ——
i adede s e LT T e i i o

BY clauses.

returns all the colums in the table or view specified.
The * can be qualified with a table name when there are
multiple tables and/or views listed in the FROM clause.

specifies a temporary numeric value to be assigned to null
values encountered during processing.

indicates that the value stored in a character string field
is to be stored in variable length format. Currently,
ORACLE stores all character string values in variable
length format whether or not VAR is specified.

specifies the name of the view that is being defined. Table
and view names must be unique within the database. The
maximum length of the view name is 3@ characters. The first
character must be alphabetic.

qualifies the rows that are to be returned as the result of
a query. The WHERE clause may contain any cambination of
predicates that campare fields of rows to constant values,
canmpare two fields of a row with each other, compare fields
to expressions, etc.

specifies that the grantee may grant the privileges listed
to other users.

returns all colums fram all of the table(s) and view(s)
specified in the FROM clause of the query block, and can
also specify the count of all rows that satisfy the WHERE
clause. The * may only be used with the COINT function in
the form: COUNT(*).

indicates the equal ocamparison operator.

indicates the not equal camparison operator.

indicates the greater than camparison operator.

indicates the greater than or equal camparison operator.
indicates the lsss than comparison operator

indicates the less than or equal camparison operator.
specifies that the rows of the table listed in the from
clause are to participate in the join if the join-column

contains a null value. This is referred to as a
“Outer-Join". An outer join table cannot be the first

1-10

table.colum

table label

tran-id

UNIQUE

UPDATE space

user-name

table listed in the FROM clause.

specifies the name of a colum qualified by the name of the
table that contains the column. Qualified column names are
used to eliminate ambiguity when the FROM clause lists
multiple tables or views that contain duplicate column
names.

specifies that the table or iew is to be renamed within the
context of a query block. The renaming of a table with a
label is necessary when the same table or view is listed
more than once in the same FROM clause. This mechanisn is
used to join a table to itself. The temporary label is
used in place of the table name to qualify colums
referenced by the other clauses within the query block.

specifies an integer value. Tran-id must be specified when
transactions are numbered in the BEGIN TRANSACTION
statement.

indicates that the index to be maintained on this column
is to have forward campression only. If UC is not
specified, the index will have both forward and backward
canpression.

indicates that duplicate rows are to be eliminated fram the
query result in a WHERE clause or that no two fields within
a ocolumn can have the same value if IMAGE has been
specified.

specifies that the table should be locked for all other
update and read transactions.

specifies the name of the table containing a row or set of
rows that are to be modified. A SET clause is used to
specify the updates which are to be performed on the cne or
more columns within a row.

returns the name of the user (as specified in the DEFINE
USER cammand) who is executing this SQI statement.

specifies the name or identifier of the user being defined.
The user must enter this name when logging on to an ORACLE
database. The user-name can have a maximum length of 20
characters.

-

SECTION 2. ORACLE S(L DESCRIPTION
ORACLE SOL is a relational data language with facilities for query

statements, data manipulation, data definition, and data control. SOL is
based on SEQUEL which was originally developed by IBM as the main
external interface for System R. Relational Software Incorporated (RSI)
developed ORACLE incorporating SQL with a relational model of data.
ORACLE SQL (hereafter referred to as SQL) was designed to increase
productivity by producing a highly sympathetic user language, data
independence and flexibility.

The format notation that follows conforms to the ORACLE SQL manual

notation, as referenced on page 2-2 of the Oracle User's Guide - Version

2.3: Z
Y
CAPITALIZED WORDS identify words that have specific meanings in !
lower case words identify words that are namegs or labels to be
specified by the user. ‘

[] Square Brackets are used to indicate that the enclosed word is

optional and may be amitted.

| | Vertical Bars enclosing vertically stacked items indicate _
that one of the enclosed items may be chosen. i
i
... Ellipsis indicates that the immediately preceding unit %
may occur once or any nunber of times in :
succession. §

2.1 Query Statements. The basic SQL retrieval or query statement

consists of one or more Query Blocks, and is of the form:

SELECT a, (specifies what is to be returned as a result of
the query block)

FROM relation r (specifies what tables and/or views are involved
in the query)

2-1

The following optional clauses (detailed in the BNF) may be
contained in the query: WHERE, GROUP BY, HAVING, OCONNECT BY, START WITH,
and INCLUDING. Values resulting fram processing one Query Block can be

referred to in the WHERE clause of another Query Block. This is

acoamplished by nesting Query Blocks withi a Query statement.

FROM
WHERE 3, satisfy {set of boolean conditions}
Query Blocks can be nested at any level, and may be cambined with other
SQL predicates using boolean AND, OR and NOT. "SELECT ..." always
denotes a nested Query Block.
The SELECT instruction specifies the return of columns fram the
table(s) and/or view(s) specified in the WHERE clause of the Query Block.

The SELECT instruction may be modified by any of the following commands:

SELECT [UINIQUE] | * | . locolumn
| column | |table.colum!
|table.colunn| |table.* |
|table.* | lexpression |
lexpression | |function |
| function | luser |

Explanation of the SELECT modifiers appears in the BNF at the end of this
section and in the User's Manual. Essentially the SELECT clause is used

to request: "all columns; specific columns: results of arithmetic

expressions or build-in functions; or a cambination of columns,

expressions and functions.” Note that duplications are not eliminated
unless SELECT INIQUE is specified. UNIQUE is an option not a default,
because extra processing is required to eliminate duplicate expressions.

The FROM clause is used to list the tables and views referred to in
the other clauses of the query block. The query block will always
contain a SELECT and FROM clause, and may contain a WHERE, GROUP BY, and
HAVING clause. Table, table label, and table * are modifiers of the FRM
clause that specify location or names of participating elements.

The WHERE clause is used to qualify the rows that are to be returned
as the result of a query. Any grouping of predicates that campares
fields of rows to constant values, or two fields of a row with each
other, or compares fields to expressions may be contained in the WHERE
clause. In SQL multiple predicates in the WHERE clause can be connected
by AND or OR with square brackets [] to form logical expressions and
establish procedure. Specifying NOT before a predicate negates the
predicate an boolean expressions. Exclusion of a WHERE clause causes all
rows in the specified table or view in the FRM clause to be returned.

In ORACIE five functions were built-in, as standard to the system.

loount| |* |
lsam | |colum |
lavg | |table.columl|
Imax |
Imin |

These functions may be used in both the SELECT and HAVING clauses.
If these functions are used within the SELECT clause, there need be no
GROUP BY clause in the query block. The entire table is treated as one

group. Here, only unique attributes of the group may be selected. The

2-3

i S i e o i i

function, COUNT, may be applied to columns defined as CHAR in the CREATE
TABLE. With the exception of the COUNT function, null values will not be
included in a built-in function unless the NULL function parameter is
used.

The Null Value Function assigns a temporary value to null values
found within an expression. It can be used in a SELECT, SET or WHERE

clause anywhere a column name may be used including within arithmetic

expressions and built-in functions.

The GROUP BY clause partitions tables or views into groups
according to the values in a ocolumn or a list of colums. Then, a
built-in function is always applied to each group. "when a GROUP BY
clause is used, or implied by the presence of a built-in function in the
SELECT clause, each field in the SELECT clause must be a unique property
of the grouwp."”

The HAVING clause delineates groups that are to be returned as the
result of a query. Each field listed in this clause must be a unique
property of the group. The HAVING clause will accept any cambination of
predicates in order to specify the appropriate groups. When there are
both WHERE and HAVING clauses, the WHERE clause is to be applied first to |

qualify rows. The groups are then formed, and then the HAVING clause is

, applied, to qualify the groups. The following expressions, detailed in
the User's Guide, modify the HAVING clause.

| column | |= | locolum | |anp|

|table.column| |»>= | |table.column | Jor | i
|constant [B | lconstant |

INULL | |>= | lgeneric~-constant|

lexpression | |« | INuLL |

l<colum, ...>] <= | lexpression |

T

Bt

L

|USER | |between| |<colum,...> |
N | l<expression,...>|

| SELECT |

|USER |

CONNECT BY, in ORACLE is used to specify the selection of rows
according to their tree-structure relationship. This clause requires
specification of major and minor columns. The PRIOR keyword is
positioned before the column to indicate the direction the rows are going
on the tree.

The START WITH clause is used to specify the rows designated as
starting points in queries on tree-structured tables. This clause may
contain any predicate or logical expression that can be contained in a
WHERE clause. START WITH is always used in conjunction with the CONNECT
BY clause.

The INCLUDING clause is also used with queries on tree-structured
tables in conjunction with the WHERE clause to determine the rows to be
returned as the result of the query. Rows excluded because they fail to
satisfy the WHERE clause cause exclusion of an entire branch of a tree
structure. FRows excluded because they fail to satisfy an INCLUDING
clause result only in that row being excluded. INCLUDING is an optional
clause. It may cambine any predicates or logical expressions that can be
used in a WHERE clause. INCLUDING is used in conjunction with the
OONNECT BY clause.

ORCER BY is an instruction that indicates the sequence in which the
query result is to be returned. The ORCER BY clause is not a part of the
query block, and may only be used next to the first gquery block of a SQL

query statement.

2-5

SRy D LA T SR) S e b T ey Y ST v

2.2 Data Definition Statements. Data definition statements allow

modification of data definitions in the ORACLE Data Dictionary. Use of
these statements does not require reorganization activity. There are
four basic statements in this category. They are: CREATE TABLE; EXPAND
TABLE; DEFINE VIEW; and DROP.

The statement CREATE TABLE is used to define a new table to be
inserted in the database. This statement specifies the name of the
table, the names of the columns, and the column data types. In the
CREATE TABLE stateswnt nuil or duplicate values may be restricted and
high performance acc%s: paths may be specified. A table can contain up
t> 255 columns. An index (IMAGE) is automatically maintained in the
first column deiined in the table. Sequential processing of rows in the
table is aided by storage in physical sequence based an the index.

EXPAND TABLE adds a new column to a table that already exists in the
database. New columns are added on the right side of the table. A query
or a view written in terms of the base table (without addition) is not
affected by the expansion. Existing rows are treated as null values in
the new column until they are updated.

Alternative views of data stored in tables in the database can be
created by use of the DEFINE VIEW statement. Any query formation can be
used to define the view, or the view may be defined in terms of other
views. The DEFINE VIEW statement will name the view and may (optionally)
name its columns.

The DROP statement is used to eliminate tables or views fram the

system. A table cannot be dropped if it contains data. Neither a table

nor a view can be dropped if another view is defined upon it. All

applicable rows must be deleted before the DROP statement is used.

2.3 Data Manipulation Statements. Data manipulation statements provide

for addition, deletion, or modification of column values or rows of a
table. There are four S(L clauses designed for these fuimctions. They
are: INSERT INTO; DELETE; UPDATE:; and SET.

INSERT INTO is used to add a new row or set of rows into a table.
Fields without values are defined as null values. If all the fields are
present in the correct order for the row, the list of column names may be
amnitted.

The DELETE instruction specifies the table name containing the
row(s) to be removed fram the database. The specific rows to be deleted
are qualified by a WHERE clause. The WHERE clause in a DELETE
instruction is identical to the WHERE clause of a query statement and may
be contained in nested query blocks.

An UPDATE clause is used to name the table that contains the row(s)
to be modified. The SET clause specifies the updates to be performed on
the column(s) within a row. Here, too, the WHERE clause identifies the
specific row(s) to be modified. An UPDATE statement may not be used to
modify primary keys. The new values being updated can be stated as
constants or expressions.

2.4 Security and Concurrency Control Statements . This section includes

discussion of SOL Data Control Statements for Security and Concurrency
Control. The following statements provide the framework for Security

Control: DEFINE USER; GRANT: REVOKE: and PASSWORD. The ooncurrency

-

T

T

T W T Y,

ocontrol statements are: BBEGIN TRANSACTION and END TRANSACTION.

DEFINE USER is the statement that allows an authorized user access
to a secure database. Only authorized users can log on to a secure
database. The user who builds the database is, until otherwise
specified, the only authorized user. The IEFINE USER instruction allows
new users to 1log on to the database, to add tables and to allow new users
access to the database. It does not, however, allow access to stored
data in the database without data access privileges which are given via
the GRANT cammand.

The user who builds the table or view, controls access to it. The
user may allow others to access the table or view through the GRANT
ocommand. Within this comqmand the following privileges may be allowed:
READ; INSERT:; DELETE; UPDATE (by column); and EXPAND. Only the READ
privilege may be granted for a view. Use of the WITH GRANT OPTION will
allow additional users to grant privileges to other users.

The REVOKE statement withdraws privileges that have been allowed
through the GRANT cammand. The privileges named are removed fram "the
grantee and fram all users to whom he has granted them."” All of the
privileges that may be granted may be revoked.

A user's password is redefined through use of the PASSWORD
statement. The user can redefine only his own password.

Logical transactions consisting of one or more SQL statements use
the BEGIN TRANSACTION statement to identify the start point. This

statement specifies the tables (if any) being locked up for UPDATE

purposes or for READ purposes.

%

The END TRANSACTION statement terminates the transaction that

started with a BEGIN TRANSACTION statement.

2-9

S e gy b el

§QL
BNF Syntax

sgl-statement :: = query
| dml-statement
| ddl-statement
| control-statement
= insertion
| deletion
| update
query :: = query-block [ORDER BY ord-spec-list]
insertion :: = INSERT INTO receiver : insert-spec
receiver :: = table-name [(field-name-list))
field-name-list :: = field-name

| field-name-list , field name
insert-spec :: = query-block

| lit-tuple
deletion :: = DELETE table-name [where-clause)
update :: = UPDATE table-name [where-~clause]
SET set-clause-list [where-clause)

where-clause :: = WHERE boolean
set-clause-list :: = set-clause

| set-clause-list , set-clause
set-clause :: = field-name = expr
query-block :: = select-clause

FROM from-list
WHERE boolean]
GROUP BY field-spec-list]}
HAVING boolean]
CONNECT BY [PRIOR] field-spec = field-spec]
START WITH boolean]
INCLUDING boolean]
SELECT [UNIQUE] set-expr-list
SELECT [UNIQUE) ¢
sel-expr
sel-expr-list , sel-expr

dml-statement ::

P g P T g P

select-clause

sel-expr-list :

sel-expr :: = expr
| var-name . ¢
| table-name . *
from-list :: = table-name [var-name]
| from-1ist , table-name [var-name)
field-spec-list :: = field-spec
| field-spec-1ist , field-spec
ord-spec-list :: = field-spec [direction)
| expr
| ord-spec-l1iat , field-spec [direction]
direction :: = ASC .
| DESC

2-10

R

boolean :: = boolean-~term
| boolean OR boolean-term
boolean-term :: = boolean-factor
| boolean-term AND boolean factor
boolean-factor :: = [NOT] boolean primary
boolean-primary :: = predicate
| [boolean]
predicate :: = expr comparison expr
| expr BETWEEN expr AND expr
| expr comparison table-spec
| < field-spec-1ist> = table spec
| < field-spec-1ist > [IS] 1IN table-spec
table-spec :: = query-block
|} literal
expr :: = arith-term
| expr add-op arith-term
arith-term :: = arith-factor
| arith-term mult-op arith-factor
arith-factor :: = [add-op) primary
primary :: = field-spec
| set-fn (expr)
| COUNT (*)
] NVL (field-spec , constant)
| constant
| (expr)
:: = field-name
| table-name . field-name
| var-name . field-name
comparison :: = comp-op

field-spec

| [IS] 1IN
comp-op :: T =
I >
| >=
I <
| <=
add-op :: T +
mult-op :: = *
| 7/
set-fn :: = AVG
| MAX
| MIN
| SUM
} COUNT

literal :: = ¢ lit-tuple-list >
| lit-tuple
| constant
lit-tuple-list :: = lit-tuple
| 1it-tuple-list , lit-tuple
lit-tuple :: = < entry-list >
entry-list :: = entry
| entry-list , entry
entry :: = [constant]
constant :: = quoted-string
| number
| NULL
table-name :: = name
image-name :: = name
name :: = jidentifier
fieid-name :: = identifier
var-name :: = identifier
integer :: = number
ddl-statement :: = create-table
| expand-table
| define-view
| drop
create~table :: = CREATE TABLE table-name (field-defn-list)
field-defn-1ist :: = field-defn
| field-defn-list , field-defn
fleld-defn :: = field-name (type [. type-mod])
type :: = CHAR (integer) { VAR]
| NUMBER
type-mod :: = NONULL
| IMAGE [iwmage-mod]
image-mod :: T UNIQUE
uc
expand-table :: = EXPAND TABLE table-name ADD COLUMN field-defn
define-view :: = DEFINE VIEW table-name
[(field-name-list)] AS query
drop :: = system-entity name
system-entity :: = TABLE
| VIEW
control-statement :: = define-user
| password-spec
] revoke i
| begin-trans 3
| end~trans
define-user :: = DEFINE USER user-defn
user-defn :: = user-name/password
password-spec :: = PASSWORD password

T T A (G i s e A AT M . S B SIG % s i

grant :: = GRANT [auth] table-name TO user-list
[WITH GRANT OPTION]
auth :: = ALL RIGHTS ON
| operation-list ON
| ALL BUT operation-list ON

user-list :: = user-name

| user-list , user-name

| PUBLIC
operation-list :: = operation

| operation-list , operation

operation :: = READ

| INSERT

{ DELETE

| UPDATE [(field-name-list))

| EXPAND
revoke :: = REVOKE [auth] table-name FROM user-list
begin trans :: = BEGIN TRANSACTION [tran-number]}

ON TABLE table-name trans-type

tran-number :: = (integer)
trans-type :: = UPDATE

! READ
end trans :: = END TRANSACTION [tran-number]

This Section was extracted fram the ORACLE USER'S GUIDE ,
pp. 2-51 = 2-54.

SECTION 3. WIQUE SQL/DS FEATURES

SQL/Data System is being developed by IBM for use on the 370 series
or 4300 camputers under DOS/VSE. SOL/DS had a Beta test in August, 1981,
but is not projected to be ready for commercial installation until
February, 1982. SQOL/DS offers significant flexibility in data definition
and modification; high-level capabilities; and fairly simple user access

facilities. This system is designed to provide ease in programming and

use for both the user and the programmer.

User access to data is also easier in SQL/DS. IBM calls it
;v “"automatic navigation" which means that the user can access data by
indicating what data he needs, rather than specifying how to find it.
SQL/DS does not require that the user know how the data is stored. The
user view of the database is two dimensional. The extract function that

is built-in to SQL/DS allows it to copy data fram a DL/I database into

its tabular form.

This system has the capability to allow an application program to
"accept and execute a user entered cammand at execution time, thereby
providing for the possibility of program control of user queries." The
host language preprocessor stores cbject code access codes modules, which
are executed at run time by application programs, in the data dictionary.
This feature eliminates the need for program recampilation when access
paths are changed.

A further, significant feature of SQL/DS is its direct bridge

capability. The DL/1 DOS/VSE extract facility, queues and executes

requests at specified times for data from a DL/l database using

3-1

e EENEL A S - G SR ~.-*L7~~,::r.~.;nf;1::<m‘3

VSE/POWER. The facility has a DL/l database description capability in
SOL/DS, a DL/l extract component, and an SQL/DS load camponent in which
the SOL/DS target relations have been defined.

Additional features of interest on this system include: control of
free space with a parameter in the ACQUIRE DBSPACE command; that
archiving may be done during regular operation; automatic roll-back; and
a defined hierarchy of security authorizations.

The SQL/DS system when it is commonly available, will have several
significant features. It is, however, important to note that it shares
most of its capabilities with INGRES and ORACLE. As E. Martin Dieckmann
noted in his article "Three Relational DBMS," "The three systems are
striking in their gimilarities. They differ more in the degree to which
they have implemented certain facilities and capabilities than in the

array of facilities offered."”

EIE A TR e 2 U bt vl . ISR AN S e PR SR i - I AT e RO ROABN I SIS & B\~ S U N L TemB b

SECTION 4. IDL DESCRIPTION
IDL (Intelligent Database Language) is a general-purpose query

language that translates easily into IIM-internal form developed by

Britton-Lee, Inc. The intelligent terminal raises the query: it
translates the user cammard to the IIM-internmal form without the IIM ever
seeing the original user-generated cammand. Several front-end systems
are capable of taking a user-generated database command and translating
it to the IDM-intermal form. Hardware, software and data requirements
should be used to select the cammand language suitable for translation
application. IDL is used in this comparative analysis because it
describes IDM camnands easily.

The following symbols are used in IDL cammands. They are extracted

fram the IDM 500 Software Reference Manual Version 1.3, September, 1981.

', %) - Parentheses are necessary, and must appear literally in
the command.

[, *)' - Anything included in square braces is optional.

1t - A vertical bar indicates that a choice of words is

o presented.
{, *}' - Curly braces indicate that the word may appear @ or

more times.

/#*, **/* - Words between these symbols are explanatory ocomments.
<, *»* - words in angle braces are meta-gymbols.
All other words are key words and must appear literally.

4.1 Query Statements. In order to display data from relations present

in the database, a range statement must first be provided. The range

e S

statement associates a variable name to a relation name. Most IDM
camands require the range variable, not the actual relation name. Next
the cammand retrieve and the names of the attributes to be found are
listed. This is called the “target list.” This list is qualified by an
instruction (called a qualification or a where clause) that specifies
vhich tuples to get the data fram. Expressions that appear on the target
list must be named so that the front-end program can display the name
vhen the value is sent by the IDM. Expressions can appear in the target
list and in the qualification.

Qualifications also determine which objects are affected by a
cammand. They are boolean expressions of relational clauses. In fact, a
relational clause may only appear in a qualification, where operands may
be in any expression.

Aggregate functions are strong elements of IDL. They are designed
to return a set of values. A scalar aggregate is an arithmetic
expression that operates over cne or more functions and returns a single
value. In the IDM, the following are aggregate operators: MIN, MAX,
COUNT, SuM, ADG, and ANY. “ANY" returns @ if no tuples qualify;
otherwise "ANY" returns 1. CONT, SIM and AVG (average) may use the
modifier wnique. If that option is selected, only non-~duplicated values
of the expression will be included in the aggregate. The result of the
aggregate must also be given a name, so that the answer (result) can be
identified. Qualifications are written inside the parentheses next to

the cbject of the aggregate. In this way, the qualification refers to

the objects being operated upon, not to the entire query. This

distinction allows considerable flexibility. An aggregate is always a

sel f-contained query ambedded inside another query.

In IIL, the growp by operator is called the "by" clause. It is this
clause that distinguishes the syntax between aggregate functions and
simple aggregates. When the qualification appears outside the aggregate
function parentheses it is not being used to evaluate the function. It
is, instead, used to specify which answers to print out. The
qualification is serving as a general where clause. When the by clause
is global to the whole query, the names on the target list are the same
as the names in the by clause. They are referring to the same tuple in
the qualification list.

The "order by" clause is included, by the user, to specify the
order of the data. Use of this clause is the only way to assure that the
data will be returned in a specific order. BAbsence of an order by clause
allows the IIM to return tuples in the order the IM finds most efficient
for processing.

4.2 Data Definition Statements. The cammand "create" is used to set uwp

a relation in IDL. Basically, the command sets up an empty relation in
the database currently open. Attribute types and maximum attribute size
must be gpecified in the create statement. To create a new database, the
command is "create database.” This command sets up a database that is
anpty except for the system relations. If parameters are to be included

they must be specified here, otherwise the IIM assumes no parameters are

to be included, and will use its default values. "Demand" specifies the

desired size of the database. The database will not be allowed to grow

ol

beyond the size specified.

"Retrieve into" is the caomnand that creates a new relation fram one

or more old ones. This command causes the new relation to be filled with
the data specified including any data conversion that has been specified.
When the “"retrieve into" command is finished executing, a copy of the new
data is in the new relation and the old relation should be removed with
the destroy cammand. This process redefines the data structures to meet
the changing needs of the database.

There is a data dictionary built into the IDM's data management
system. It was designed to enable users to interactively define the data
schema, and to look up that schema once it has been defined. Three of
the relations that perform the data dictionary functions are described
further.

The "relation" relation holds a list of all the relations in the
database identified by the IDM-assigned relation id (relid), relation
names, relation owners, number of tuples, and other information needed by
the IIM to process cammands on the relation.

The "attribute" relation contains information on each attribute of
each relation in the database such as: attribute name, type, relid,
IDM-assigned attribute id (attid) and all other attribute information
needed by the IDM.

The "descriptions" relation associates one or more descriptions with
a relid/attid pair. If the attid is zero the description is associated

only with the relid. Descriptions may be up to 255 characters long.

4-4

SotlBi b 3 v e 6 ek Ko animas i - €W

The relation and attribute relation are autamatically updated when a
new relation is added to a database. The user has the option to update
the description relation to store information about the relation. When a

relation is destroyed, the related tuples in the relation, attribute and

description relations are autamatically deleted.

Adding a column to a table in IDL requires that a new table be
created. The procedure requires that a new table consisting of the old
table plus the new column be formatted. The old table is then destroyed
and the new table takes the name of the old table.

“Create view" is a command used to set up a virtual relation, one
that is an unreal entity. Thé view is camposed of parts of one or more
relations (called close relations), .or other views. Views may be
preserved or destroyed just as relations are. They may also be updated
if the update can unambiguously be applied to one of the base relations.

The "define" statement defines the following stored cammands:
retrieve, append, replace, delete, begin transaction and end transaction.
In this cammand, a parameter can be used in any place a constant could be
used. The "define program” statement is used in programs and is
referenced with a 4-byte number used to refer to the stored command.
Each "define program” is associated with a program name and held
physically near other define program commands using the same program
name.

The "destroy" command eliminates relations, files, views and stored
camands. This command removes the entire cbject fram the system. Its

space is then freed for use within the current database. If there are

4-5

views or stored commands dependent on a database due to be destroyed,

they must be destroyed first. Only the owner or database administrator

may destroy an cbject.
4.3 Data Manjpulation Statements. Data may be inserted into relations

through the "append" caommand. These cammands cause the IDM to store the
data in the specified relations. Basically, the command adds gzero or
more tuples to a relation or a view. The names and values of attributes
must be specified at this juncture. An attribute with no assigned value
is given a default wvalue: blanks for character attributes and zero for
numeric attributes.

The command “delete" is used to remowe one or more tuples fram a
relation. Only a user with write permission may make deletions from a
relation.

The camand “replace” substitutes one or more attributes in zero or
more tuples of a relation. The variable is located outside the target
list since only one relation may be affected by a single replace command.
“Replace" may access more than one relation to calculate what is to be
updated and how it is to change.

4.4 Security and Concurrency Control Statements. This section contains

the security and concurrency control statements used in IDL. The
statements, permit and deny, provide the framework for security control.
Begin transaction and end transaction are the fundamental concurrency
oontrol statements.

The command "permit" is a protection control cammand. It allows

designated users access to a relation, view, file or stored commard.

B

User names are recorded in the "users" relation by the Database
Administrator. If no names are recorded, everyone may access the
information. Read, write or "all" capabilities may be specified in the
<protect mode> of relations, views or files. Execute must be specified
for stored commands. Relations, views, files and stored commands default
to no access allowed by anyone except the owner. The DBA may grant
permission to use the create, create index and create database commands.

"Deny” is the command used to refuse access to users. Access may be
denied to a relation, file, view or stored command by user names or group
names. If no users are specified, the protection applies to everyone.
Read and write apply to relations, views and files. "All" genies both
read and write capability. A deny command has precedence owver previous
permit camands. Only the owner of an cbject or the DBRA can deny access.
The DBA may also deny rights to use the create, create index and create
database commands.

The "begin transaction" command is used whenever multiple IM
commands are to be treated as a single transaction. The "end
trangaction" command is given whenever a set of commands that ocommenced
with "begin transaction” is completed. This allows the user to make the

results of the transaction known to the rest of the system.

4-7

SECTION 5. IDM COMMAND RELATIONSHIP TO IDL

The IIM 500 Database Machine does not have a machine language. It
is programmed through a series of high level cammands and interpretations
of the results. Each command begins with a cammand token, an op-code.
The last byte of the cammand is always the END OF COMMAND token which
tells the IIM that the command is camplete and that processing can begin.
Parameters of cammands are defined with other tokens. In this section of
the report, Britton-Lee's namenclature and architecture are followed
explicitly. Document tokens are written in capital letters. Nurbers to
the right of the token are one-byte length specifiers. These numbers are
sent after the token and are followed by as many bytes of data as are
associated with the token. The examples that follow show both the IDL
form and the resulting IDM command notation. Examples are used at
several junctures to clarify formats. The symbols defined in the
introduction to Section 3 are used in the command definitions.

5.1 Query/Parse Tree

The meta-symbol notation for a query tree is:

<query tree>:LT-list>= =><rootnode>L= =ig-list>

where the components are defined as:

<rootnode> : ROOT <bytel><byte2)
where
<byte 1l>=range no. for result variable
<byte 2>=status bits for unique/non-unique,

retrieve/retrieve into,

create/destroy index, permit/deny

5-1

Y TE —-7-Pet—Pr e g gt =

|

This is the syntax for the IIM's internal-form command language.
The language consists of all valid trees which correspond to IDM
commands. After the command tree is constructed it is sent in postfix
order to the IDM.
E The process of translating the query is straightforward.
— 1. A user at a terminal types in a query.

2. The translating program puts the user command into

IM-internal form.

3. This parsing procedure evolves into a parse tree. The
left side of the parse tree is the target list. The right side of the
tree is the qualification. An example of a parse tree in IDM format
follows. Its IDL equivalent (using the standard employee file example)

is shown at the bottam of the page.

ROQT
/ -
~
M // S
N &R\
FIGURE 5.1 IDM PARSE TREE VAN I\
VAR § /
/ (0 name) / \
/ \ // cr\ 1\
/ \ / i / Dm2
/ \ g 100 / 100
TLED VAR 7 (0 nurber) /
(0 salary) /
VAR 7
(0 salary)
oot
- - .
- \
aHrl \
1L /I \\ \
7 \
7 erployee \
FIGURE 5.2 IDL PARSE TREE ater 2 (name) =
/’ \ 7 \, }
,/ aployes 7 \
- salary A RN
-lplay: 100 < N\
(maber) (salary) \\\
5-2 1000 |

5.2 Query Statements

Query statements generally include target lists, qualification,
range variables and expressions. Note, that for all of the following
examples, trees are sent using a post order traversal, and that items in
parentheses below the nodes are data associated with those nodes, and are
sent after the token value and length.

The target list is the list of objects that are affected by the
comand. In a retrieve camnand the order of the elements on the target
list will determine the order in which data is retrieved. In a query
tree, the target list which is on the left of the ROOT node end with the
TLEND (target list end) node.

<target list element>:

<name>=<expression> <attribute>
Target lists can be simple, as in the case above, where the target
list was canposed of a single relation variable and an attribute name.
Arbitrary expressions, as defined below, can also be included in the
target list. For example:

retrieve (e.name, wages = e.salary * e.hours)

ROOT
/(o 0)
ooy o
FIGURE 5.3 IDM TARGET LIST / \
/
VAR 5
RESDOM
3
/ \ (3 name)
TLEND \
MUL
7\
/ \

VAR 7 VAR 6
(3 salary) (3 hours)

5-3

i

e~ S Y T ST

—s

In the above query, the target list is composed of the attribute "e.name"
and the expression "e.salary * e.hours". The expression must be given a
name in order to be displayed to the user; the name assigned in the above
query is “wages".
The qualification is the part of the database cammand that specifies

vwhich dbjects are affected by the cammand.
<qalification>: (<cualification>)

| ot <qualification>

| <qualification> and <qualification>

| <qualification> or <qualification>

| <clause>
A qualification is a boolean expression of relational clauses.
Relational clauses may only appear in a qualification. Operands may be
in any expression. For the example:

delete emp where emp.salary >24000

the following tree would be used. S 7 (00 N\
7 AN
TLEND ﬁr \
/ \
FIGURE 5.4 QUERY TREE /7 AN
WITH QUALIFICATION VAR 7 INT 2
(0 salary) 24000

Expressions are supported by the IDM in both the target list and
qualification for most commards. The following terms which are explained
in great detail in the IDM manual are all operable expressions.

<expression>: <aggregate>

| <attribute>

I <constant>

| <expression><arithop> <expression>

| -<expression>

| (<expression>)

I <constant function>

| <unary function> (<expression>)

| (with length function>(<intl>,<expression>)

| <bmary function> (<expression>, <expression>)

| <ternary finction>(<intl>,<intl>, <expression>)
Arithmetic operato;'s are supported by the IM only for integer and BCD
expressions.

The range command associates a variable name with the name of a
relation or view. Most IDM cammands require the range variable, not the
actual relation name. The IIM requires the statements on every cammand
in which a variable is used. The ILDL syntax for range is:

range of <variable> is <dbject name>

The retrieve command causes data to be sent to the host. This
camand can reference up to 15 relations, although they must all be in
the same database. Use of an "order by" clause will specify the sort
order of the returned data. The IDL syntax for retrieve is:

retrieve [unique] [intoJ<cbject name>]
(<target list>)
(order[by] <order-spec>{:ald]
{, <order-spec>{:ald])}

e TS __'

[where<qualification>]
Given the example:
range of p is parts
retrieve (p.name,p.cost)
order by cost:descending

where p.cost>avg(p.cost)

(0 0
/7 N\
/ \
FIGURE 5.5 IDM RETRIEVE CCMMAND TREE / \
RESDOM /cr\
/ \
/ A 5 VA(’; i”t)\\
RESOOM VAR
/7 \ (0 name) /m\\
/ \
AVG
meD VAR S QUEND
(0 cost) "P’
VAR 5
RETRIEVE {0 cost)
RANGE 6 @ parts
ROOT
/(1 0)\
FIGURE 5.6 IDM RETRIEVE OCOMMAND TREE ,/ AN
/ D /Gl‘\
/ \ VAR 5 \
wvAR 5 (0 cost) aqEaD
fsn:\ (0 name) / \
/ ACPAVG \
VAR 5 \ St
(g cost) VAR 5
(¢ cost)

RANGE 6 O parts

RANGE 10 1 exp parts

The IDM command notation is extracted fraom the IDM Software Reference

Manual Version 1.3, section 7.
RETRIEVE

RANGE <lenf> <rmo> relnamel

FANGE <lenf> <rmo> relnamek
<rootnode>: ROOT @ <byte2>
/* <byte2>= 1 if retrieve wnique

and <byte2>= 0 if retrieve */

<T-list>: TLEND = =>
Il “<resattnode>
| RESDOM
| ORDERDOM " <= =<attnode> | |
<«Q-list>: <Q-subtree> | QLEND
[ORCERA x] | T[ORDERED y) /* vhere x and y are attribute **
. ** manbers an the target list **
. ** of the query tree on which **
. ** the result is sorted
<options>

ENDOFCOMMAND
|
]

5.3 Data Definition Statements

This section includes IDL notation and the IIM cammands for the

operations create, create database, retrieve into, create view, define,

5-7

S Zn T ULEEE T W ARy s e wmeeme et A e ---..‘--._..f-___..‘._j

ard destroy.
The "create" cammand sets up an empty relation in the open database.
Several optional specifications, such as size, updates and space may be

selected. These options are detailed in the IDM Software Reference

Manual Version 1.3. The IIL syntax is:

create<cbject name> (<name>=<format> {
« <name>=, <format> }) [with<options>]
The IDM create caommand appears as follows:
CREATE

RANGE <lenf> <mo> <name>

<rootnode>: ROOT <mo> 0@
<T-list>: TLEND ||= => <resattnode> <= = <typencde> ||
<Q-list>: [<= = logspec] [<= =<gspec>]

<= =[<demandspec>] |QLEND

<demandspec> : | <allocspec> <= =<dskspec>
| <dskspec>
<typenode>: TYPE INT1 | TYPE INT2 | TYPE INT 4 |

TYPE FLT4 | TYPE FLT8|

TYPE CHAR len | TYPE FCHAR len |
TYPE BCD len | TYPE FBCD 1len |
TYPE BCOFLT len | TYPE FBCDFLT len |

TYPE BINARY len | TYPE FBINARY len

logspec: QLEND = => WITH 4
<gspec>: INT1 val | INT2 val | INT4 val = = WITH 1
<alloepecs: INT1 val | INT2 val | INT4 val

5-8

= = WITH "2 | 5"
<dskspec>: CHAR <lenf> <diskname> = => WITH 3

/* where len is an attribute width in **

** bytes and <diskname> is a virtual o+

** or physical disk name */
<options>
ENDOFCOMMAND

“Create database” sets up an empty database on a framework of system

relations. The database options that may be specified include: the
number of blocks to allocate; the disk the database should be allocated
to; and the disk on vwhich to write the transactions log. Note that if
there is no space on the specified disk the database will not be created.
The syntax is:

create database <name>[with<options>]
The IIM camnand structure for “create database" is:
DBCREATE

RANGE <lenf> <rno> <dbname>

<rootnode>; ROOT <rno> O

<T-list>: TLEND = =>

«Q-list>: [<= = logspec] <= = [<demandspec>] | QLEND
logspec: CEEND = = WITH 4

<gspec>: INT1 val | INT2 val | INT4 val = => WITH 1
<demandspec>: <allocspec>

| <allocspec> <= =dskspec>
| <dskspec>

5-9

<allocspec>: INT1 val | INT2 val | INT4 val = =

WITH 2/5
<dskspec>: CHAR <lenf> <diskname> = => WITH 3
<gptions>
ENDOFCOMMAND

When the user requires a new relation, and wants to put the results of the
query currently being retrieved into the new relation “retrieve into" is used.

The IDL syntax and IDM cammand structure take the following formats:

retrieve into exp parts (p.name, p.cost)
order by cost:descending
where p.cost>avg (p.cost)
RET_INTO
RANGE <lenf> <rno> relnamel

RANGE <lenf> <rmo> relnamek
<rootnode>: ROOT <mo> <byte2>
/* <byte2>= 1 if retrieve unique into:

** <pyte2>= @ if retrieve into

<T-list>: TLEND = = || " <resattnode> | ORDERDOM "

<= = <attnode> ||
<«Q-list>: <«Q-subtree> | QLEND
{ORERA x] | [ORTERD y] /* wvhere x and y are attribute
. ** mmbers on the target list

5-10

*k

*/

&

L2

. ** of the query tree on which *%
. ** the result is sorted */
<options>
ENDOFCOMMAND
“Create view" is a command used to set up a virtual relation, one

!
:
1
i
]
i
i

PSRN PR

that is not a physical entity. A view is made of parts of one or more
relations (base relations) or other views. A view may be protected or
destroyed, and may be updated if the update can unambiguously be applied
to ane of the base relations. The IDL syntax for "create view" is: ;

Create view <cbject name>(<target list>)

[where<qualification>]

An example of a ‘'short “create view" query tree is reproduced here fram

the IM manwal.

range of p is parts
range of pr is products
create view mine (p.name, p.cost, pr.quan)
where pr.name = "TV"
and pr.part = p.name

VIEW »oor
/(20) \
RANGE 6 O parts ’ N\
RESATIR 4 AND
RANGE 9 1 products ,/ tnane) /N
VAR 5 L] o]
RANGE 5 2 mine '“(“m""(o= /N I\
/ VAR 5 VARS OQRR2 VARS VARS
m (0 cost) {1 name) V) (1 part) (0 name)
AN
noo VAR $
Q quan)
FIGURE 5.7 CREATE VIEW QUERY TREE
S-11

A LCIREE 1L 77 S ETATA MDA A N TR) Y S TS T D,

The IIM caomand format for "create view" is:
VIEW

RANGE <lenfl> <rmol>

RANGE <lenfk> <rmok>

RANGE <lenf> <viewname>

<rootnode>: ROOT <rno> @

<T-list>: TLEND || = => RESATTR <= = <attnode> ||
<«Q-list>: <Q-subtree> | QLEND

<options>

ENDOFCOMMAND

The define statement is used to define one of the following stored
comnands; retrieve, append, replace, delete, begin transaction or end
transaction. The cammnand may employ parameters anywhere that a constant
would normally be acceptable. The IDL syntax is:

{define <name><command>{<cammand>}end define.
The IDM command mode requires that in constructing a "define tree:
replace proper <varnode> which will beccme a parameter by corresponding
<paramnod> in each cammand tree which appears in a stored cammand".

The camard "destroy" is used to eliminate relations, files, views,
and stored commands. The entire cbject is removed fram the system,

freeing the space for another cbject. Only the owner or the DBA can

destroy cbjects. Objects with dependent views or stored commands must

it

have those destroyed before the cbject may be destroyed. The destroy

cammand may be implemented two ways: first, by specifying the object
name and; second, by specifying relation names through the use of a
target disk.
The IDL syntax is:
destroy<dbject name>{, <cbject name>}
destroy (<target list>)[where<qualification>]
The I™M camand format is:

DESTROY
<rootnode> : ROOT @ @

<T-list>: TLEND || = => RESDOM <= = <attnode> ||
<«Q-list> <Q-subtree>

<options>

ENDOFCOMMAND

5.4 Data Manipulation Statements

The commands append, delete, "and replace are data manipulation
statements. These statements are designed to add, delete or modify column
or row values within relations or views

The append command adds tuples to a relation or a view. Attributes
are named and their values specified at this juncture. An attribute
without a gpecified value is assigned a default value. The IDL syntax
for the append command is:

append [to] <object name>(<target list>)
[where<qualification>])

The IIM cammand format follows:

B T e

T

APPEND

RANGE <lenf> <mmo> relnamel

RANGE <lenf> <mo> relnamek

<rootnode>: ROOT <rmo> @

<T-list>: TLEND = => { <resattnode> <= = <attnode> }
<«Q-list>: <Q-subtree> | QLEND

<options>

ENDOFCOMMAND

The command “delete” is used to remove one or more tuples fram a
relation. Permission to delete is granted with "write" permission. The
IDL syntax is:

delete <variable>[where<qualification>]
The IIM camand structure for "delete" is:
DELETE

RANGE <lenf> <rmo> relnamel

RANGE <lenf> <rmo> relnamek
<rootnode> : ROOT <rno> 9 /* where <rmo>=range no. *
**for the result variable */

<T-1list>: TLEND

<«Q-list>: <«Q-gubtree> | QLEND

<options>

ENDOFCOMMAND
"Replace” is a camand that replaces one or more attributes in zero

or more tuples of a relation. A single replace command affects one

relation. The variable is outside the target list. "Replace" may access

one or more relations to calculate what is to be updated or changed. The
IDL syntax is:
replace <variable>(<target list>)
[where <qualification>]
The IIM camnand set structure for replace is:
REPLACE

RANGE <lenf> <mmo> relnamel

RANGE <lenf> <rmo> relnamek

X <rootnode> ROOT <mo> <byte2>
CT-list>: TLEND = => || <resattnode> <= = <attnode> ||
<«Q~list>: <Q-subtree> | QLEND

-é : <options>

E PR
} 5.5 Security and Concurrency Control Statements

This section focuses on security and concurrency control statements.

In IDL the statements "permit" and "deny" are the framework for database

security. Begin Transaction and End Transaction are the fundamental

B i £

G LIRS pi)

b

Somhivmiard v BRA N R

concurrency control statements.

The camand “"permit” allows specific user(s) or groups access to a
relation, database, or index. Permission to read, write or "all", may be
granted. Secure "users”" names are recorded in the "users" relation by
the IBA. Without user specifications, anyone may access the information.
Permission to create, create index, and create database may also be
granted. The IDL syntax is:

permit <protect mode>[[onlof]<cbject name>
{(<attlist>)][tocuser>{, <user>}]

The IIM command syntax is: PERMIT
RANGE <lenf> <rno> <name>
<rootnode>: ROOT <rno> mode

/* on read mode=Q1 */

/* on write mode=02 */

/* on all mode=13 */

/* on execute mode-@34 */

<T-list>: TLEND = => “"RESDOM <= = <varnode>"
<Q-list>: || CHAR <lenf> <username> = => QUALDOM ||
| QLEND
| QLEND
<username>: /* a user to vwham the object is denied */
<options>
ENDOFCOMMAND

"Deny" is a command used to bar access to users. Access may be

denied to a relation, view, file or stored cammand. If there are no

5-16

users specified, the protection applies to everyone. Access may be

denied to read, write or all. Deny camands which ocontradict earlier
permit camands take precedence. The DBA may also deny rights to use the
create, create index, and create database cammands. The IDL syntax is:
deny<protect mode>[[onlcf]<object name>
[(<attlist>)]}[to <user>{,<user>}]
The IDL cammand format is:
DENY
RANGE <lenf> <mo> <name>
<rootnode>: ROOT <rmo> <mode>
/* on read mode=@1 */
/* on write mode=02 */
/* cn all mode=@3 */

/* on execute mode=@34 */

¢T-list>: TLEND || = => RESDOM <= = <varnode> ||

<«Q-list>: || CHAR <lenf> <username> = => QUALDOM | |
<= =QLEND

<username>: /* a name to whom the cbject is denied */

<options>

ENDOFCOMMAND

The command "begin transaction" is given vwhenever multiple IM
camands are to be treated as a single transaction. The IDL syntax is:
begin transaction.
The IDM command structure is:

BBEGINEXACT

5-17

fa]

<options>
ENDOFCOMMAND
The command "end transaction” is used whenever a set of cammands i
that commenced with a "begin transaction” is camplete, amd the user
wishes to make the results of the transaction known to the rest of the
system. The IIL syntax is j
end transaction.
The IIM cammard structure is:
ENDXACT

<options>

5-18

SECTION 6. CORRELATION BETWEEN SCQI, AND IDM FEATURES
In the earlier sections of this analysis the features of ORACLE SQL

(hereafter referred to as SQL) and IDM/IDL were described in detail. 1In

this section, examples of the constructs of each language will be placed
, side by side, s0 that the reader can get an understanding for how SQL
1 might be translated to IDL. Those features of SQL that are not available
' with the IDM are discussed later in this section. Please note that all
of the examples use the classic database example of personnel/employee
files. Information such as employee: name, numnber, salary, department,
location and title is manipulated to show the capabilities of both
systems. The SQL formats are capitalized, and the IDL formats are
| presented in the lower case.

6.1 Query Facilities

E ORACLE SOL InL

1. Find the names of the employees in department 50. (Query cammand)

SELECT NAME range of e is emp
FRM EMP retrieve (e.name) where e.deptno=50
WHERE DEPTNO=50)
; 2. Find the names of the employees in departments ‘
' 25, 47 and S3. (Where clause) :
SELECT NAME range of e is emp
FROM EMP retrieve (e.name) where e.deptno=25

WHERE DEPTNO IN (25,47,53) OR e.deptno=47 or e.deptno=53.
3. List the names of all employees who earn between $1,200 and $1,409 (Range

of values)

SELECT NAME range of e is emp

FRM BMP retrieve (e.name) where e.sal >
WHERE SAL BEIWEEN 1200 and 1400 1mme.sa1_<_1m

4. Find the names of employees who work for departments in New York (Nested
queries)

Siadcr)

6.

9.

10.

SELECT NAME range of e is emp

FROM BEMP range of d is dept

WHERE DEPINO IN retrieve (e.name) where e.deptno=
SELECT DEPTNO d.deptno
FROM LEPT and d. loc = "New York"

WHERE LOC = "NEW YORK"

List the names of employees who have the same jcb and salary as “SMITH'
(Range variables on the same table)

SELECT NAME range of e is emp

FROM BEMP range of £ is emp

WHERE <JOB, SAL>= retrieve (e.name) where f.name=
SELECT JOB, SAL “SMITH"
FROM BMP and f.jcb=e.jcb and f.sal=e.sal
WHERE NAME="SMITH"

List all of the departments and the average salary within each of them
(GROUP BY (SQL)/BY(IDL)clause)

SELECT CEPT NO, AVG (SAL) range of e is emp
FRM EMP retrieve (e.deptno, asal=avg
GROUP BY DEPTNO (e.sal by e.deptno))

List the departments in which the average employee salary is less than
10,000 (HAVING clause (SQL)/WHERE clause (IDL))

SELBECT DEPTNO range of e is emp
FROM BEMP retrieve (e.deptno) where avg
GROUP BY DEPTNO (e.sal by e.deptno) < 10000

HAVING AVG (SAL) < 19000

List the departments that employ more than ten clerks (COUNT function)

SELECT DEPTNO range of e is emp
FRM EMP retrieve (e.deptno) where count
WHERE JOB = ‘CLERK' (e.jcb by e.deptno where e.jcb =

GROUP BY DEPTNO
HAVING COUNT (*) > 10

CLERK") > 10

Determine the number of different jcbs held by employees in department
50 (UNIQUE aggregates)

SEIECT COUNT (UWNIQUE JOB) range of e is emp
FROM BEMP retrieve (tamwp = count wnique
WHERE DEPINO = 50 (e.jcb where e.deptno=5@))

When a CREATE TABLE statement is used in SQL with the IMAGE option

6-2

defined on a colum, it indicates that an index is to be maintained for

the values in that colum. In IIL, a clustered or nonclustered index can

t be created for an attribute or a grouwp of attributes in a relation. The
IIM can sort the relation by its "parts" on the part number, and then
Create a directory that relates the part number to the physical location
of the associated part tuple. That command is stated:

create clustered index on parts (number)

6.2 Data Manipulation Facilities

SQL IDL

1 1. Insert a new employee information into the amployee table. (INSERT INTO
(saL), append (IDL) clause)

1 INSERT INTO EMP(EMPNO, NAME, JOB, SAL, append to emp(empno=7989,

OCOMM,DEPTND) : <7989, ‘CARTER', name = "CARTER",

‘SALESMAN", 1500,0, 38> job="SALESMAN", SAL=1500,
cam=d, deptno=30)

- 2. Delete the employee tuple with employee number 561 fram the EMP table
- (DELETE clause)

‘ DELETE EMP range of e is emp
WHERE EMPNO = 561 delete e where e.empno=561
’ 6.3 Data Definition Facilities

“ . l. Create a new table to ocontain department, name and location information
(CREATE TABLE statement)

; SQL IDL
v' CREATE TABLE [EPT creat dept (deptno=UC2, name=Cl2,
(DEPTNO (CHAR(2), NONULL),DNAME loc = c20)

(CHAR(12)VAR) ,LOC(CHAR(20)VAR))

Note that names are limited to 12 characters in IDL, and 30 characters
in ORACIE.

2. Define a view called PROGS consisting of the names and salaries of all
programmers and the locations of their departments (DEFINE statement)

DEFINE VIBA PROGS range of e is emp

6-3

(NAME, SALARY, HOMEBASE)AS range of d is dept

SELECT EMP.NAME, EMP. SAL, DEPT.LOC create view progs (name=e.name,
FROM BMP, TEPT salary = e.sal, homebase=d.loc)
WHERE EMP.DEPTNO=DEPT . DEPTNO vhere e.deptno=d.deptno ard
AND EMP JOB="PROGRAMMER" e. job="programmer"

3. Add a new column called NEMPS, of integer type, to the table DEPT
(EXPAND TABLE statement)

EXPAND TABLE DEPT range of 4 is dept

ADD COLUMN NEMPS (INTEGER) retrieve into ndept (deptno=
d.deptno, d.name=d.dname,
loc=d.loc,namps=3)
destroy dept
rename ndept, dept

Note that in IDL to add a column it is necessary to: create a new expanded

table destroy the old table, and use the name of the old table for the
new table.

4. Destroy the view D50 (DROP (SQL), destroy (IDL), cammand)
DROP VIEW D50 destroy 450

6.4 Security and Concurrency Control Facilities

1. Authorize user GEORGE to READ the DEPT table (GRANT(SQL)perm-t(IDL)

statement)
SQL IDL
GRANT READ permit read of dept to george
oN CEPT
TO GEORGE

2. Revoke fram user GEORGE the right to WRITE in the DEPT table. (REVOKE
(saL), deny(IDL)statement)

REVOKE WRITE deny write on dept to george
! oN DEPT
' FROM GEORGE

3. Calculate the average salaries of each jcb position within the EMP table
(BEGIN and END transaction)

BEGIN TRANSACTION range of e is amp
ON TABLE BMP READ begin transaction

retrieve (e.job, amavg(e.sal by

6-4

R L LN O P ey

SELECT JOB, AVG(SAL) e.job))
FROM EMP end transaction
GROUP BY JOB
END TRANSACTION
Certain features implemented in ORACLE/SOL are not implemented on
the IDM. A brief list of these capabilities follows. For expanded

descriptions see Section 2 of this analysis or the ORACLE USER'S GUIDE -

Version 2.3.

1. In ORACLE/SQL names may be 3@ characters long. On the IDM, the
maximm name length is 12 characters.

2. ORACLE/SQL has the capability for retrieval operations on
tree-structured tables. This capability is not implemented in the IDM.

3. ORACLIE auctomatically maintains an index (IMAGE) for the first
column defined in a table. The IDM requires the user to explicitly
indicate on which columns to cdlefine an index.

4q. In ORACLE/SQL columns can be added to the right side of
existing tables by means of the EXPAND TABLE statement. With the IDM,
the user must build a new expanded table, destroy the old table, and
rename the new table with the name of the old table.

5. The ORACLE/SQL GRANT command enables users to grant the
follo;d.xag rrivileges to other users: READ, INSERT, DELETE, UPDATE and
EXPAND. The IIM permits READ, WRITE, INSERT and UPDATE.

6. In ORACLE/SQL the MNull Value Function is used. The IIM has no

equivalent.

6-5

SECTION 7. ADDITIONAL IDM FEATURES

The IIM has both software and special-purpose hardware features that
are significant for their range, speed and depth. These features such j
as the transaction management functions, the randam access file system,

and the camplete relational database management system are all described

in detail in the Britton-Lee Product Description. Same of the unique

features of the IIM are highlighted below.

! . ‘ Within the IDM data management system is the capacity to use a
E‘ stored command. A stored command is one defined earlier by the user, ard
stored in a partially processed form in the IDM. Fram this point on, the
camand can be referred to by the user with a short name or number. Both
the transmission and execution times are minimized because the cammand is
stored in the IDM.

Using the stored query feature is of critical importance for |

front-end programs. This function allows the internal form of the query
to be stored in the IM. The front-end program sends the query name and
appropriate parameters. This reduces the amount of information that

needs to be transmitted to run a query. It also reduces the size of the

front~-end program, leading to more efficient programs.

The IDM has a 1-31 decimal digit BCD (binary coded decimal) and 1, 2
and 4-byte integers. When a relation is created, the maximum length of
the BCD and character attributes are specified. The IIM automatically
ocanresses data to save storage space.

Tuples are accessed by values not by position. Therefore the
structure of a relation can change. Attributes can be added, and the

7-1

relation can be reorganized with very little impact on end-user programs.
The values are specified in the qualification.

The IDM has two special constant functions in addition to the
standard aggregate functions. The “time" function supplies the time of
day in a 4-byte integer. The "date" function provides the date in a
4-byte integer.

The IDM has the capability to handle complex aggregate functions
using built in functions within WHERE clauses, a capability that is not

available in SQL. The following example, extracted fraom The Preliminary

Performance Report is a good illustration.

"For each account get the name of the account and the
average balance for this account type for those
account types whose average balance is greater than
twice the minimum of all account types.

range of a is acoounts

retrieve (a.name, avg = ave (a.balance by a.type))

vhere avg (a.balance by a.type) > (min(a.balance by
a.type)*"

The IDM also has the capability to handle an aggregate within an
aggregate. The following is an example:

retrieve (amavg(max(e.sal by e.deptno)))

Using a qualification within an aggregate is also a special
capability of the IDM.

retrieve (a=avg(max(e.sal by e.deptno where e.yrs>5)))

. A

SECTION 8. UNIMPLEMENTED FEATURES F FULL SEQUEL

Certain features of SPQUEL as defined in the article, "SEQUEL 2: A
Unified Approach to Data Definition, Manipulation, and Control" that
appeared in the IBM Journal of Research and Development, (Vol. 20

November, 1976) were not implemented in ORACLE. These features are noted
briefly in the following section and illustrated with examples.

1. In SEQUEL query-expr nonterminal defines set operations. ORACLE
does not support set operations.
SEQUEL ORACLE

query: :=query-expr query: :=query-block ORIER BY ord-spec-list]
[ORLER BY ord-spec-list]

query-expr : :=query-block
lquery-expr set-up query block
1(query-expr)
2. The SEQUEL syntax includes an INTO clause, which is used for
the host language interface. This capability is not included in the
ORACIE syntax. The ORACLE syntax permits a HAVING clause without a GROUP

BY clause which is forbidden by the SEQUEL syntax.

query-block: ;=select-clause aquery-block: := select-clause
[INTO target-list] FROM from-list
TWHERE boolean]
FRM fram-list TGROUP BY field-spec-list]
[WHERE boolean] [(HAVING boolean]
[{GROUP BY field-spec-list] [CONNECT BY[PRIOR]
[HAVING boolean]] field-spec=field-spec]

[START WITH boolean]
[{INCLUDING boolean]

3. SEQUEL permits an OLD or NEW qualifier, to be used with both
assertions and triggers. This concept is not supported by ORACLE. The
ORACIE NVL provides a default value to be used in place of null values.
SEQUEL does not provide an NVL function.

8-1

. —

primary: :=[OLDINEW]field-spec primary: :=field-spec
1set-fn([UNIQUE Jexpr) Iset-fn(expr)
lcount(*) lcount(*)
lconstant INVL(field-spec, constant)
1 (expr) lconstant
1 (expr)

4. SEQUEL syntax permits named dbjects to be differentiated by
their creator. ORACLE syntax does not support this capability.
name: :=[creator. Jidentifier name: :=identifier

5. The SEQUEL syntax permits the implementation of special purpose
user defined set functions which are added to a special program library.
ORACLE does not support this.
set-fn: :=AVG IMAXIMINISUMICOUNT | identifier set-fn::=AVGIMAXIMIN!SUM!COUNT

6. 'The SPQUEL syntax provides host-location and CURSOR references
for the host language interface. ORACLE does not support these or the

USER/DATE functions.

SEQUEL ORACLE

constant : := quoted-string constant : := quoted string
number Inunber
Ihost-location INULL
INULL
{1USER
IDATE

| field-name COF CURSOR
cursor-name (N table name
7. SEQUEL uses parentheses to grasp boolean operations vhile

ORACIE uses brackets.

boolean-primary::= predicate boolean-primary::= predicate
I {boolean) i{boolean)

*NOTE-brackets are terminal symbols
here

e S T

8. SEQUEL supports set operations with IS NOT IN clauses, set
func’ ons, and comparisons between two tables. It also supports an IF a

THEN b oconstruction. Neither of these capabilities are present within

QRACLE.

predicate: :=expr camparison expr predicate::=expr camparison expr
lexpr BETWEEN expr AND expr lexpr BEIWEEN expr AND
lexpr camparison table-spec expr
1 <field-spec-list>=table-spec lexpr camparison table-
1<field-spec-1list>{1S][NOT] spec
IN table spec 1<field-gpec-list>=
IIF predicate THEN predicate table-spec
ISET(field-spec-list)camparison i<field-spec-list>

3 table spec FIS]IN table spec

ISET(field-spec-list)camparison

SET (field-spec-list)
ltable~-spec camparison table-
spec

9. SBEQUEL supports the set operations CONTAINS, DOES NOT OONTAIN,

and as previously noted, IS NOT IN. ORACLE does not support these

operations.
SEQUEL ORACLE
camparison: s=comp-op camparison : :=comp-op
LOONTAINS t[IS]IN
IDOES NOT OONTAIN
. 1(1s]IN
! 1fISINOT IN

16. SEQUEL uses angle brackets to delimit tuples, and parentheses
to delimit lists of tuples or scalar constants. ORACIE uses angle
brackets for both of these purposes.

literal::=(lit-tuple-list) literal::=<lit-tuple-list>
1lit-tuple 1lit-tuple
I{entry-list) lconstant

lconstant

